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High-altitude long-endurance (HALE) aircraft have wings with high aspect ratios. During operations of these
aircraft, the wings can undergo large static de� ections. These large static de� ections can change the natural
frequencies of the wing, which, in turn, can produce signi� cant changes in its aeroelastic behavior. This behavior
can be accounted for only by using a rigorous nonlinear aeroelastic analysis. Results are obtained from such an
analysis for aeroelastic behavior as well as overall � ight dynamic characteristics of a complete aircraft model
representative of HALE aircraft. When the nonlinear � exibility effects are taken into account in the calculation of
trim and � ight dynamics characteristics, the predicted aeroelastic behavior of the complete aircraft turns out to
be very different from what it would be without such effects.

Introduction

H IGH-ALTITUDE long-endurance (HALE) aircraft have
gained importanceover the past decade.Unpiloted HALE air-

craft are being designed for a variety of � ight missions, including
environmental sensing, military reconnaissance, and cellular tele-
phone relay. HALE aircraft have high-aspect-ratiowings. To make
the concept feasible in terms of weight restrictions, the wings are
very � exible. Wing � exibility coupled with the long span leads to
the possibility of large de� ections during normal � ight operation.
Also, to � y at high altitudes and low speeds requires operation at
high angles of attack, likely close to stall. Thus, it is unlikely that
an aeroelasticanalysisbased on linearizationabout the undeformed
wing could lead to accurate aeroelasticresults. Even the trim condi-
tion and � ight dynamic frequencies could be signi� cantly affected
by the � exibility and nonlinear deformation, which, in turn, could
change the overall aeroelastic characteristicsof the aircraft.

Research has been conducted in the past focusing on various ar-
eas comprising the problem just described. Nonlinear aeroelastic
analysis has gathered a lot of momentum in the last decade due
to the understanding of nonlinear dynamics as applied to complex
systems and the availabilityof the required mathematical tools. The
various studies evaluated the effect of aerodynamic stall nonlinear-
ity, structural geometric nonlinearity, and free-play nonlinearity on
the aeroelastic behavior of either an airfoil model or cantilevered
wing model.

The studies conductedby Dunn and Dugundji are a combination
of analysis and experimental validation of the effects of dynamic
stall on aeroelastic instabilities for simple cantilevered laminated
platelike wings.1 The ONERA stall model was used for aerody-
namic loads. Tang and Dowell have studied the � utter and forced
response of a � exible rotor blade.2 In the study, geometrical struc-
tural nonlinearityand free-playstructuralnonlinearityare taken into
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consideration.Again, high-angle-of-attack, unsteadyaerodynamics
was modeled using the ONERA dynamic stall model.

Virgin and Dowell have studied the nonlinearbehavior of airfoils
with control surface free play and investigatedthe limit-cycleoscil-
lations and chaotic motion of airfoils.3 Gilliatt et al. have investi-
gated the nonlinearaeroelasticbehaviorof an airfoil experimentally
and analytically.4 A nonlinear support mechanism was constructed
and is used to represent continuous structural nonlinearities.

The investigationof the effect of structural � exibilityon the over-
all aeroelastic/� ight dynamic behavior of an aircraft has been the
topic of a few research efforts. Aeroelastic characteristicsof highly
� exible aircraft were investigated by van Schoor and von Flotow.5

The complete aircraft was modeled using various modes of vibra-
tion, including rigid-body modes. The results indicate the need for
inclusionof the aircraft� exibilityin the � ightdynamicsanalysisdue
to strong interactionsbetween the low-frequencyaeroelasticmodes
and � ight dynamic modes. Linear aeroelastic and � ight dynamic
analysis results for a HALE aircraft are presented by Pendaries.6

The results highlight the effect of rigid-bodymodes on wing aeroe-
lastic characteristicsand the effect of wing � exibility on the aircraft
� ight dynamic characteristics.

The present study presents the results obtainedusing a low-order,
high-� delity nonlinear aeroelastic analysis. A theoretical basis has
been established for a consistent analysis that takes into account 1)
material anisotropy,2) geometricalnonlinearitiesof the structure,3)
unsteady � ow behavior, 4) dynamic stall, and 5) rigid-body modes.
The formulationand preliminaryresultsfor thenonlinearaeroelastic
analysis of an aircraft have been presented in earlier papers.7;8 The
present paper extendsprevious work and presents results speci� c to
HALE aircraft. The results obtained give insight into the effects of
the structural geometric nonlinearities on the trim solution, � utter
speed, and � ight dynamic characteristicsof a complete aircraft.

Present Model
The present theory is based on two separate models, namely, 1) a

mixed variationalformulationbasedon the exact intrinsicequations
for dynamics of beams in moving frames9 and 2) a � nite-state air-
loadsmodel for deformableairfoils on � xed and rotatingwings.10;11

The former theory is a nonlinear intrinsic formulation for the dy-
namics of initially curved and twisted beams in a moving frame.
There are no approximations to the geometry of the reference line
of the deformed beam or to the orientationof the cross-sectionalref-
erence frame of the deformed beam. A compact mixed variational
formulation can be derived from these equations that is well suited
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for low-order beam � nite element analysisbased in part on the orig-
inal paper by Hodges.9 The latter work presents a state-spacetheory
for the lift, drag, and all generalized forces of a deformable airfoil.
Trailing-edge � ap de� ections are included indirectly as a special
case of generalizeddeformation.The model is based on thin-airfoil
theory and allows for arbitrary small deformations of the airfoil
� xed in a reference frame that can perform arbitrary large motions.
A detailed formulation of the aeroelastic analysis of a complete air-
craft is given in earlier papers by the authors.7;8 Here, the theory is
described brie� y for the sake of completeness.

The equations of motion are derived using Hamilton’s principle,
given as,

Z t2

t1

[±.K ¡ U / C ±W ] dt D ±A (1)

where K and U are the kinetic and potential (strain) energy, respec-
tively; ±W and ±A are the virtual work and virtual action terms;
and t1 and t2 are the limits of the time interval over which the solu-
tion is required. The expressionsof the kinetic energy and potential
energy are derived using rigorous geometricallyexact kinematics.9

The virtual work is dependent on the applied forces, which, in the
present case, are the unsteady aerodynamic forces obtained using
the Peters airloads model (see Ref. 10). The in� ow in the Peters
airloads model is obtained using the � nite-state in� ow model (see
Ref. 12).

By coupling the structural and aerodynamic models one obtains
the complete aeroelastic model. By selecting the shape functions
for the variationalquantities in the formulation, one can choose be-
tween 1) � nite elements in space and 2) � nite elements in space and
time. Using � nite elements in space, one can obtaina set of ordinary
nonlinear differential equations in time representing the equations
of motion for the wing/aircraft.Coupling with the differentialequa-
tions for the in� ow leadsone to a set nonlineardifferentialequations
for the complete aeroelastic system. The steady-state solution can
be calculatedby solving the nonlinear algebraic equations obtained
by removing the time-differentiated terms. One can then calculate
linearized equations of motion about the steady state for stability
analysis. Space– time � nite elements can be used to discretize in
space as well as time. By choosing only one element in time, one
can obtain a set of nonlinear algebraic equations that can be used
for time marching and, thus, to study the dynamic nonlinear behav-
ior of the system. This kind of analysis is useful in investigating
limit-cycle oscillations.

Thus, three kinds of solutionsare possible:1) a nonlinear steady-
state solution, 2) a stability analysis for small motions about the
steady state (by linearizing about the steady state), and 3) a time-
marching solution for nonlinear dynamics of the system. The focus
of the present paper is on the steady-state (trim) and stability cal-
culations. The reader is refered to Ref. 13 for the time-marching
solution and insight into the limit-cycle oscillations of the wing.

For steady-state and stability analyses, the formulation is con-
verted to its weakest form in space, while retaining the time deriva-
tives of variables.This is achievedby transferringthe spatial deriva-
tives of variables to the corresponding variation by integration by
parts. Because of the formulation’s weakest form, simple shape
functions (linear) can be used.9 With these shape functions, the
spatial integrationin a mixed variationalequation can be performed
explicitly to give a set of nonlinearequations.14 These equationscan
be separated into structural (FS ) and aerodynamic (FL ) terms and
written as

FS.X; PX / ¡ FL.X; Y; PX/ D 0 (2)

where X are the structural degrees of freedom and Y are the in� ow
states.Similarly,onecan separatethe in� ow equationsinto an in� ow
component, FI , and a downwash component, FW , as

¡FW . PX / C FI .Y; PY / D 0 (3)

The solutions of interest for the two coupled sets of equations
[Eqs. (2) and (3)] can be expressed in the form

»
X

Y

¼
D

» NX
NY

¼
C

» LX .t/

LY .t/

¼
(4)

where the overbar denotes steady-statevalues and the invertedcarat
denotes small perturbationsabout the steady state.

For the steady state, NY is identically equal to zero [from Eq. (3)].
Thus, one has to solve a set of nonlinear equations given by

FS. NX ; 0/ ¡ FL . NX; 0; 0/ D 0 (5)

The Jacobian matrix of the preceding set of nonlinear equa-
tions can be obtained analytically and is found to be very sparse.14

The steady-state solution can be found very ef� ciently using the
Newton–Raphson method.

By perturbing Eqs. (2) and (3) about the calculated steady state
[using Eq. (4)], one obtains the transient solution from
2

664

@ FS

@ PX
¡ @FL

@ PX
0

¡ @ FW

@ PX
@ FI

@ PY

3

775
X D NX
Y D 0

( PLX
PLY

)

C

2

664

@FS

@ X
¡ @ FL

@ X
¡ @FL

@Y

0
@ FI

@Y

3

775
X D NX
Y D 0

» LX
LY

¼
D

»
0

0

¼
(6)

Now, assuming the perturbationalquantities to be proportionalto
est, one can solve the preceding equations as an eigenvalueproblem
to get the modal damping, frequency,and mode shapeof the various
modes. The stability condition of the aeroelastic system at various
operating conditions is thus obtained.

Results
Table 1 gives the structural and planform data for the aircraft

model under investigation.The aircraft model has very high-aspect-
ratio wings (see Fig. 1) and is geometrically similar to HALE air-
craft. In the next section, linear structural dynamics and aeroelas-
ticity results will be presented and compared with results obtained
using linear modal analysis. Next, results with nonlinearities in-
cluded are presented to show their importance. These include natu-
ral frequencies, � utter frequenciesand speeds, and loci of roots, all

Table 1 Aircraft model data

Parameter Value

Wing
Half span 16 m
Chord 1 m
Mass per unit length 0.75 kg/m
Moment of inertia (50% chord) 0.1 kg ¢ m
Spanwise elastic axis 50% chord
Center of gravity 50% chord
Bending rigidity 2 £ 104 N ¢ m2

Torsional rigidity 1 £ 104 N ¢ m2

Bending rigidity (chordwise) 4 £ 106 N ¢ m2

Payload and tailboom
Mass 50 kg
Moment of inertia 200 kg ¢ m2

Length of tail boom 10 m

Tail
Half-span 2.5 m
Chord 0.5 m
Mass per unit length 0.08 kg/m
Moment of inertia 0.01 kg ¢ m
Center of gravity Midchord

Flight condition
Altitude 20 km
Density of air 0.0889 kg/m3
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Table 2 Comparison of linear frequency results (rad/s)

Present %
Mode analysis Exact Error

First � atwise bending 2.247 2.243 C0.2
Second � atwise bending 14.606 14.056 C3.9
Third � atwise bending 44.012 39.356 C11.8
First torsion 31.146 31.046 C0.3
First edgewise bending 31.739 31.718 C0.1

Fig. 1 Aircraft model geometry.

obtained for an analysis linearized about an equilibrium con� gura-
tion calculated from a fully nonlinear analysis.

Linear Results

Table 2 presents frequency results based on theories that are lin-
earizedabout theundeformedstate, that is, theusual linearapproach.
The results for the present wing model were obtained using eight
� nite elements with all nonlineareffects suppressed.They are com-
paredwith the exact frequenciesof a beam.The frequenciesare very
close except for the third � atwise bending mode. The inaccuracyof
the third � atwise bending mode can be attributed to the coarse � nite
elements discretization(eight elements); however, the third � atwise
bendingmode does not signi� cantly in� uence the aeroelasticresults
for this particular example.

Table 3 presents results from a linear calculation for � utter fre-
quency and speed for the present wing model. The results from the
present analysis are obtained with all nonlinear effects suppressed.

Table 3 Comparison of linear aeroelastic results

Present Analysis %
Parameter analysis of Ref. 15 Difference

Flutter speed, m/s 32.21 32.51 ¡0.9
Flutter frequency, rad/s 22.61 22.37 C1.1
Divergence speed, m/s 37.29 37.15 C0.4

Fig. 2 Variation of � utter speed with angle of attack.

Eight � nite elements are used to model the structure and six in� ow
states are used to model the in� ow within each of the � nite elements.
The results are compared against those obtained using the theory
of Ref. 15, which uses a Rayleigh–Ritz structural analysis with
uncoupled beam mode shapes and Theodorsen’s two-dimensional
thin-airfoil theory for unsteady aerodynamics.The results are prac-
tically identical, indicating that eight � nite elements are suf� cient
for the purposes of aeroelastic � utter calculations.

Nonlinear Flutter Results

What is meant by nonlinear � utter needs to be clari� ed. First,
the complete nonlinear model is used to obtain the static equilib-
rium con� guration. Then, the equations are dynamically linearized
about the static equilibrium con� guration to obtain a set of linear
differential equations in terms of the perturbationvariables. Flutter
analysis is then conductedwith these linearizedequationsof motion
to calculate the nonlinear � utter speed.

Results are � rst presented for just the wing (with a cantilevered
boundary condition). To investigate the effect of � ight loads, the
analysis is conducted for various values of angle of attack. The
proper angle of attack in � ight will be a function of the � ight con-
� guration.Figure 2 presents the nonlinear� utter results for the wing
model including static deformationdue to gravity and aerodynamic
forces. The � utter speed and frequency at each value of root angle
of attack is obtained as follows: 1) choose a � ight speed, 2) cal-
culate the static equilibrium deformed shape at the � ight speed, 3)
dynamically linearize about the deformed shape, 4) calculate the
eigenvaluesof the linearizedsystem, 5) check for stability, if stable,
increase the � ight speed and repeat all of the preceding steps until
instability speed is reached.

Figure 2 shows the variation of the nonlinear � utter speed as a
functionof ®0 , the rootangleof attack.The plot showsrapid changes
in the � utter speed at low values of ®0. Also, the nonlinear � utter
speed and frequency are much lower than those estimated by the
linear model. At low ®0 , the aerodynamic forces are low and grav-
itational forces lead to downward bending of the wing. As will be
explained in detail in the next section, wing bending leads to struc-
tural nonlinearities,which, in turn, change the aeroelasticcharacter-
istics of the wing. At around 0.61 deg, there is a jump in the � utter
speed and frequency. After the jump there is a smooth decrease in
� utter speed and frequency. At around 4.5 deg, the � utter speed
again jumps, this time off of the scale of the plot. Figure 3 shows
the correspondingtip displacementat the � utter speed. As expected,
the tip displacement is negative for low ®0. There is a discontinu-
ity in the tip displacement that coincides with the discontinuity in
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Fig. 3 Flutter static tip displacement at various root angles of attack.

Fig. 4 Variation of structural frequencies with tip displacement.

� utter speed and frequency in Fig. 2. After the discontinuity, the
tip displacement increases monotonically. Note that in actual 1-g
� ight, ®0 will be high enough so that the lift balances the weight of
both the wing and fuselage,and, thus, the deformed wing shapewill
always be curved upward. Comparing the two plots, one can infer
that wing bending (or tip displacement) is favorable for � utter and
leads to decrease in the � utter speed.

Flutter Speed and Tip Displacement

It turns out that there is a strong relationshipbetween the wing-tip
displacement and the � utter speed. In the example considered, the
drastic change in aeroelastic characteristicsis due to changes in the
structural characteristics of the wing due to bending (tip displace-
ment). Unfortunately, this effect is easily confused with that due to
additionalvelocity-tipdisplacementcouplingintroducedby ®0, that
is, apart from � utter speed being a functionof tip displacement(due
to structural nonlinearities), the tip displacement itself is a function
of the speed (due to aerodynamic forces, which are a function of
speed).

The case study presented in this section uses a tip load to deform
the wing. This tip load is not a function of � ight speed, and one can
clearlyobservethe effectof bendingon the wing � utter.First, the re-
sults for the variation of structural natural frequenciesas a function
of wing-tipdisplacementare shown in Fig. 4. Structuraldeformation
in wing bending(up and down or � atwise) leads to couplingbetween
the torsion and edgewisebendingmode. This couplingcan be physi-
cally understoodby observingthat an edgewise force on a deformed
wing would lead to twisting.The reader is referredto Ref. 16 for de-
tails. In the present case, one observes a large decrease in the modal
frequency for the torsion mode (which becomes coupled torsion/
edgewise bending mode) as tip displacement is increased.The � at-
wise bendingmodes are unaffected.Figure 5 shows the correspond-
ing drop in both � utter speed and � utter frequencywith increase in
tip displacement.This decrease in the � utter speed (and frequency)
is directly connected to the decrease in the torsional frequencywith

Fig. 5 Variation of � utter speed and frequency with given static tip
displacement.

Fig. 6 Correlation of � utter speed and wing tip displacement.

deformation. Lower torsional frequency helps in coupling with the
� atwise bending mode, leading to lower � utter speed.17

To understand the results presented in the previous section, one
needs now to do some cross plotting. Figure 6 demonstrates how
closely the wing-tip displacement correlates with the � utter speed,
and how it could be used to obtain � utter results for various values
of ®0 (as presented in Fig. 2). The thick line plots the � utter speed
as a function of tip displacement (same as Fig. 5). The other curves
plot the tip displacement as a function of speed at various ®0 . For
example, the solid line for ®0 D 0 deg is just a straight line because
the tip displacement is only due to gravity. For very small ®0 , the
� utter and tip displacement curves intersect at very small speeds,
and one gets very low � utter speeds. For slightly higher ®0, around
0.5 deg, the � utter and tip displacementcurves intersect three times.
Thus, one observes that the wing � utters in a range of speeds, after
which it is again stable for a range of speeds, after which it � utters
again. The range of speeds over which the wing � utters, however,
decreases with increasing ®0 . At around ®0 D 0:75 deg, the � rst
two intersection points collapse, the � rst range of � utter speed dis-
appears, and the � utter speed jumps to the next � utter range. At
this ®0 , one sees a jump in the � utter speed from approximately
22 m/s up to about 28 m/s, and a corresponding jump in the tip
displacement.

In summary, the nonlineareffects related to � utter (for the present
model) are associated with the shift in natural frequencies caused
by the change in static equilibrium con� guration. This explains the
decrease in the � utter speed shown in Fig. 2. Figure 6 gives more
insight into the behavior of the system and provides a complete
picture of the range and strength of instability and the existence of
hump modes (small regions of weak instability).

The jump in � utter speed at ®0 D 4:5 deg (Fig. 2) can also be
explained by similar matching. Figure 7 shows the frequency and
damping plots for larger angles of attack. Again, � utter occurs in
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Fig. 7 Frequency and damping plots for various root angles of attack.

Fig. 8 Effect of torsion/edgewise bending structural coupling on the
nonlinear � utter results.

a small range above the � utter critical speed. Though the � utter
speed is decreasing with ®0 , the strength and range of � utter is also
decreasing. At around 4.5 deg, the damping does not reach zero
before reversing its direction and increasing; thus, there is a jump in
� utter speed. Note here that even though there is no instability, the
damping at some � ight speeds may be very close to zero, possibly
leading to large vibrations.

Avoiding Deleterious Nonlinear Effects

As discussed in the earlier section, lift-induced curvature of the
beam leads to a signi� cant decrease in the � utter speed. This degra-
dation of the aeroelasticcharacteristicscan be attributed to coupling
between torsion and edgewise bending, induced by that curvature.
Thus, one could possibly increase the � utter speed by applying an
opposite coupling.

Figure 8 shows the effect of structural coupling on the nonlinear
aeroelasticcharacteristicsof the wing. The parameterÃ is the cross-
sectional coupling coef� cient de� ned by the ratio of the torsion/
edgewise bendingcoupling � exibility to the square root of the prod-
uct of the torsional and edgewise bending � exibility. It is assumed
that a maximum coupling of §0.2 can be obtained by structural
tailoring. As seen in Fig. 8, the coupling leads to shift of the � utter
speed. One can thus obtain an approximately 10% increase in the
� utter speed with such induced coupling.

To increase the � utter speed at a speci� c loading condition, one
could precurve the wing downward so that at the nominal � ight
condition the wing is approximately straight. Figure 9 shows the
effect of precurvatureon the nonlinear � utter results. Note that one
could tailor the curvature so that at the trim condition, the wing
is almost straight, and, thus, the � utter speed will be increased to
a level close to the undeformed wing � utter speed. Note that the

Fig. 9 Effect of precurvature on the nonlinear � utter results.

Fig. 10 Variation of Å®0 with � ight speed.

Fig. 11 Wing displacement at 25 m/s.

downward precurvature is limited by the ground clearance required
of the wings.

Trim Results

This section investigates the static trim results for the airplane.
Figure 10 shows the trim angle of attack N®0 at various � ight speeds.
Here, N®0 is obtained by calculating the angle of attack that gives the
required vertical force. Contrary to expectationsbased only on lin-
ear static aeroelasticity,the value of N®0 requiredfroma � exible wing
is more than that from a rigid one. This is because the aerodynamic
lift is directed at an angle perpendicular to the � ow and the wing
reference line, which, in the present case of large � atwise bend-
ing, implies that the lift does not act in the vertical direction. The
displacement along the wing is certainly outside the region of ap-
plicabilityof linear theory, as indicated in Fig. 11, which shows the
displacementshape of the wing at a 25 m/s forward speed trim con-
dition. This large deformation and associated loss of aerodynamic
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Table 4 Comparison of rigid aircraft � ight dynamics

Present Analysis %
Parameter analysis of ref. 18 Difference

Phugoid frequency !n P 0.320 0.319 C0.3
Phugoid damping ³P 0.0702 0.0709 ¡1.0
Short period frequency !nSP 5.47 5.67 ¡3.5
Short period damping ³SP 0.910 0.905 C0.6

Fig. 12 Total lift to rigid lift ratio at ®0 = 5 deg.

force in the vertical direction leads to the requirement of a higher
value of N®0 .

Figure 12 plots the ratio of total lift (force in vertical direction
perpendicularto the � ightvelocityand span) to rigid lift as a function
of speed.The drastic loss of effectivevertical lift is clearly observed
in the nonlinear model as compared to the linear one. The main
signi� cance of this result lies in that, if the stall angle is around
10deg, then the rigid-winganalysisgives the stall speed to be22m/s,
whereastheactual� exibleaircraftwouldstall at a higher� ightspeed
of around 25 m/s (see Fig. 10). The use of linear theory to predict
aircraft performancewould, thus, lead to incorrect estimationof the
� ight envelope.

Rigid Aircraft Flight Dynamics

Table 4 shows the phugoid and short-periodmode results for the
example aircraft � ying at 25 m/s. The results are obtained given
a rigid wing and are compared against the frequencies obtained
by a simple rigid aircraft analysis given by Roskam.18 One sees
that results from the present analysis are essentially identical to the
previously published results.

Stability of Complete Aircraft

When � exibilityeffects are taken into account in a � ight dynamic
analysis, the behavior is distinctly different from that of a rigid air-
craft. Figure 13 compares the � ight dynamics roots (frequenciesand
dampings) obtained with and without wing � exibility.The phugoid
as well as the short-period mode are affected by wing � exibility.
To see the transition of the root locus plot from rigid aircraft to
� exible aircraft, a stiffened aircraft root locus plot is also provided.
The stiffened aircraft wing stiffnessesare � ve times the actual wing
stiffnesses. With the help of this additional case, the drastic differ-
ence in the � ight dynamic modes due to wing � exibility can be seen
as a smooth transition rather than a jump.

On the other hand, the rigid-bodymodes usually associatedwith
the � ight dynamic roots also affect the aeroelastic behavior of the
wing.Figure14comparesthe rootlocusplot for thecompleteaircraft
(including nonlinear aeroelastic analysis and rigid-body modes)
with those obtained by using linear wing aeroelastic analysis and
nonlinear wing aeroelasticanalysis.The nonlinear wing aeroelastic
analysisuses the known � ight trim angleof attackas the equilibrium
condition, and the eigenvalue analysis is conducted at that steady
state. A magni� ed plot is inserted that shows the qualitative dif-
ferences in more detail. Clearly, the low-frequency modes that in-

Fig. 13 Root locus plot showing the � ight dynamics roots, with a mag-
ni� ed section showing the roots nearest the origin.

Fig. 14 Expanded root locus plot with magni� ed section inserted that
depicts roots in vicinity of the unstable root.

volve wing � exibility are completely coupled to the � ight dynamic
modes, changing their behavior completely. On the other hand, the
high-frequencywing aeroelasticmodes do not strongly couple with
the � ight dynamic modes. However, the effect of the trim condition
is very important because the trim condition de� nes the nonlin-
ear equilibrium about which the aeroelastic model is dynamically
linearized. Thus, the � utter modes are not predicted accurately by
the linear theory, but the nonlinear wing theory does a good job
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because the � utter modes are primarily affected by the wing struc-
tural nonlinearity.Thus, if the static trim solution is properly taken
into account, one can expect a simpli� ed nonlinear analysis, for ex-
ample, one that includes only the cantilevered wing, to give a good
estimate of the complete aircraft aeroelastic stability.

Conclusions
A nonlinear aeroelastic study has been conducted on a complete

aircraft model geometrically similar to current HALE aircraft. Be-
cause of the large aspect ratio of the wing, the corresponding large
de� ections under aerodynamic loads, and the changes in the aero-
dynamic loads due to the large de� ections, there can be signi� cant
changes in the aeroelastic behavior of the wing. In particular, sig-
ni� cant changes can occur in the natural frequenciesof the wing as
a function of its tip displacement that very closely track the changes
in the � utter speed. This behavior can be accounted for only by
using a rigorous nonlinear aeroelastic analysis. The reduction in
� utter speed due to the nonlinear coupling among edgewise wing
bending and torsion (arising from the � atwise bending deforma-
tion) can be decreased by the introduction of opposite structural
coupling between torsion and edgewise bending, for example, by
the use of composite tailoring, or it could be effectively eliminated
by precurving the wing.

The overall � ight dynamic characteristics of the aircraft also
change due to wing � exibility. In particular,the trim solutionas well
as the short-periodand phugoidmodes are affectedby wing � exibil-
ity. Should one neglect the nonlinear trim solutionand the � ight dy-
namic frequencies,one may � nd the predicted aeroelastic behavior
of the complete aircraft to be very different from its actual behavior.
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