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High-altitude long-endurance (HALE) aircraft have wings with high aspect ratios. During operations of these
aircraft, the wings can undergo large static deflections. These large static deflections can change the natural
frequencies of the wing, which, in turn, can produce significant changes in its aeroelastic behavior. This behavior
can be accounted for only by using a rigorous nonlinear aeroelastic analysis. Results are obtained from such an
analysis for aeroelastic behavior as well as overall flight dynamic characteristics of a complete aircraft model
representative of HALE aircraft. When the nonlinear flexibility effects are taken into account in the calculation of
trim and flight dynamics characteristics, the predicted aeroelastic behavior of the complete aircraft turns out to
be very different from what it would be without such effects.

Introduction

IGH-ALTITUDE long-endurance (HALE) aircraft have

gained importance over the pastdecade. Unpiloted HALE air-
craft are being designed for a variety of flight missions, including
environmental sensing, military reconnaissance, and cellular tele-
phone relay. HALE aircraft have high-aspect-ratiowings. To make
the concept feasible in terms of weight restrictions, the wings are
very flexible. Wing flexibility coupled with the long span leads to
the possibility of large deflections during normal flight operation.
Also, to fly at high altitudes and low speeds requires operation at
high angles of attack, likely close to stall. Thus, it is unlikely that
an aeroelasticanalysis based on linearization about the undeformed
wing could lead to accurate aeroelasticresults. Even the trim condi-
tion and flight dynamic frequencies could be significantly affected
by the flexibility and nonlinear deformation, which, in turn, could
change the overall aeroelastic characteristics of the aircraft.

Research has been conducted in the past focusing on various ar-
eas comprising the problem just described. Nonlinear aeroelastic
analysis has gathered a lot of momentum in the last decade due
to the understanding of nonlinear dynamics as applied to complex
systems and the availability of the required mathematical tools. The
various studies evaluated the effect of aerodynamic stall nonlinear-
ity, structural geometric nonlinearity, and free-play nonlinearity on
the aeroelastic behavior of either an airfoil model or cantilevered
wing model.

The studies conducted by Dunn and Dugundji are a combination
of analysis and experimental validation of the effects of dynamic
stall on aeroelastic instabilities for simple cantilevered laminated
platelike wings.! The ONERA stall model was used for aerody-
namic loads. Tang and Dowell have studied the flutter and forced
response of a flexible rotor blade.? In the study, geometrical struc-
tural nonlinearityand free-play structuralnonlinearity are taken into
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consideration. Again, high-angle-of-attack unsteady aerodynamics
was modeled using the ONERA dynamic stall model.

Virgin and Dowell have studied the nonlinearbehavior of airfoils
with control surface free play and investigatedthe limit-cycle oscil-
lations and chaotic motion of airfoils.® Gilliatt et al. have investi-
gated the nonlinearaeroelasticbehavior of an airfoil experimentally
and analytically} A nonlinear support mechanism was constructed
and is used to represent continuous structural nonlinearities.

The investigationof the effect of structural flexibility on the over-
all aeroelasticMlight dynamic behavior of an aircraft has been the
topic of a few research efforts. Aeroelastic characteristicsof highly
flexible aircraft were investigated by van Schoor and von Flotow.?
The complete aircraft was modeled using various modes of vibra-
tion, including rigid-body modes. The results indicate the need for
inclusionof the aircraftflexibility in the flightdynamicsanalysisdue
to strong interactions between the low-frequency aeroelastic modes
and flight dynamic modes. Linear aeroelastic and flight dynamic
analysis results for a HALE aircraft are presented by Pendaries ®
The results highlight the effect of rigid-body modes on wing aeroe-
lastic characteristicsand the effect of wing flexibility on the aircraft
flight dynamic characteristics.

The present study presents the results obtained using a low-order,
high-fidelity nonlinear aeroelastic analysis. A theoretical basis has
been established for a consistentanalysis that takes into account 1)
material anisotropy,2) geometricalnonlinearitiesof the structure,3)
unsteady flow behavior, 4) dynamic stall, and 5) rigid-body modes.
The formulationand preliminary results for the nonlinearaeroelastic
analysis of an aircraft have been presented in earlier papers.”® The
present paper extends previous work and presents results specific to
HALE aircraft. The results obtained give insight into the effects of
the structural geometric nonlinearities on the trim solution, flutter
speed, and flight dynamic characteristicsof a complete aircraft.

Present Model

The present theory is based on two separate models, namely, 1) a
mixed variational formulationbased on the exact intrinsicequations
for dynamics of beams in moving frames® and 2) a finite-state air-
loads model for deformable airfoils on fixed and rotating wings.!%!!
The former theory is a nonlinear intrinsic formulation for the dy-
namics of initially curved and twisted beams in a moving frame.
There are no approximations to the geometry of the reference line
of the deformed beam or to the orientationof the cross-sectionalref-
erence frame of the deformed beam. A compact mixed variational
formulation can be derived from these equations that is well suited
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for low-order beam finite element analysis based in part on the orig-
inal paper by Hodges.’ The latter work presents a state-space theory
for the lift, drag, and all generalized forces of a deformable airfoil.
Trailing-edge flap deflections are included indirectly as a special
case of generalized deformation. The model is based on thin-airfoil
theory and allows for arbitrary small deformations of the airfoil
fixed in a reference frame that can perform arbitrary large motions.
A detailed formulation of the aeroelastic analysis of a complete air-
craftis given in earlier papers by the authors.”® Here, the theory is
described briefly for the sake of completeness.

The equations of motion are derived using Hamilton’s principle,
given as,

/_[B(K—U)—i—B_W]dt:m 1)

where K and U are the kinetic and potential (strain) energy, respec-
tively; W and §.A are the virtual work and virtual action terms;
and #, and 1, are the limits of the time interval over which the solu-
tion is required. The expressions of the kinetic energy and potential
energy are derived using rigorous geometrically exact kinematics.’
The virtual work is dependent on the applied forces, which, in the
present case, are the unsteady aerodynamic forces obtained using
the Peters airloads model (see Ref. 10). The inflow in the Peters
airloads model is obtained using the finite-state inflow model (see
Ref. 12).

By coupling the structural and aerodynamic models one obtains
the complete aeroelastic model. By selecting the shape functions
for the variational quantities in the formulation, one can choose be-
tween 1) finite elements in space and 2) finite elements in space and
time. Using finite elements in space, one can obtain a set of ordinary
nonlinear differential equations in time representing the equations
of motion for the wing/aircraft. Coupling with the differentialequa-
tions for the inflow leads one to a set nonlineardifferentialequations
for the complete aeroelastic system. The steady-state solution can
be calculated by solving the nonlinear algebraic equations obtained
by removing the time-differentiated terms. One can then calculate
linearized equations of motion about the steady state for stability
analysis. Space-time finite elements can be used to discretize in
space as well as time. By choosing only one element in time, one
can obtain a set of nonlinear algebraic equations that can be used
for time marching and, thus, to study the dynamic nonlinear behav-
ior of the system. This kind of analysis is useful in investigating
limit-cycle oscillations.

Thus, three kinds of solutions are possible: 1) a nonlinear steady-
state solution, 2) a stability analysis for small motions about the
steady state (by linearizing about the steady state), and 3) a time-
marching solution for nonlinear dynamics of the system. The focus
of the present paper is on the steady-state (trim) and stability cal-
culations. The reader is refered to Ref. 13 for the time-marching
solution and insightinto the limit-cycle oscillations of the wing.

For steady-state and stability analyses, the formulation is con-
verted to its weakest form in space, while retaining the time deriva-
tives of variables. This is achieved by transferring the spatial deriva-
tives of variables to the corresponding variation by integration by
parts. Because of the formulation’s weakest form, simple shape
functions (linear) can be used.” With these shape functions, the
spatial integrationin a mixed variationalequation can be performed
explicitly to give a set of nonlinearequations.'* These equations can
be separated into structural (Fy) and aerodynamic (F; ) terms and
written as

Fs(X,X)— F.(X,Y,X) =0 )

where X are the structural degrees of freedom and Y are the inflow
states. Similarly, one can separatethe inflow equationsinto an inflow
component, F;, and a downwash component, Fy, as

—FyX)+ F,(Y,Y)=0 3)

The solutions of interest for the two coupled sets of equations
[Egs. (2) and (3)] can be expressed in the form

X X X(@)
N @)
Y Y Y(@)
where the overbar denotes steady-state values and the inverted carat
denotes small perturbationsabout the steady state.

For the steady state, Y is identically equal to zero [from Eq. (3)].
Thus, one has to solve a set of nonlinear equations given by

Fg(X,0)— F.(X,0,0)=0 (5)

The Jacobian matrix of the preceding set of nonlinear equa-
tions can be obtained analytically and is found to be very sparse.!
The steady-state solution can be found very efficiently using the
Newton-Raphson method.

By perturbing Egs. (2) and (3) about the calculated steady state
[using Eq. (4)], one obtains the transient solution from
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Now, assuming the perturbationalquantities to be proportional to
e*, one can solve the preceding equations as an eigenvalue problem
to get the modal damping, frequency, and mode shape of the various
modes. The stability condition of the aeroelastic system at various
operating conditions is thus obtained.

Results

Table 1 gives the structural and planform data for the aircraft
model under investigation. The aircraft model has very high-aspect-
ratio wings (see Fig. 1) and is geometrically similar to HALE air-
craft. In the next section, linear structural dynamics and aeroelas-
ticity results will be presented and compared with results obtained
using linear modal analysis. Next, results with nonlinearities in-
cluded are presented to show their importance. These include natu-
ral frequencies, flutter frequencies and speeds, and loci of roots, all

Table1 Aircraft model data

Parameter Value
Wing
Half span 16 m
Chord Im
Mass per unit length 0.75 kg/m
Moment of inertia (50% chord) 0.1kg-m
Spanwise elastic axis 50% chord
Center of gravity 50% chord
Bending rigidity 2x10* N-m?
Torsional rigidity 1 x10* N-m?
Bending rigidity (chordwise) 4% 10°N-m?
Payload and tailboom
Mass 50 kg
Moment of inertia 200 kg - m?
Length of tail boom 10 m
Tail
Half-span 2.5m
Chord 0.5m
Mass per unit length 0.08 kg/m
Moment of inertia 0.01kg-m
Center of gravity Midchord

Flight condition
Altitude 20 km
Density of air 0.0889 kg/m?
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Table 2 Comparison of linear frequency results (rad/s)

Present %
Mode analysis Exact Error
First flatwise bending 2.247 2.243 +0.2
Second flatwise bending 14.606 14.056 +3.9
Third flatwise bending 44.012 39.356 +11.8
First torsion 31.146 31.046 +0.3
First edgewise bending 31.739 31.718 +0.1
'
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Fig. 1 Aircraft model geometry.

obtained for an analysis linearized about an equilibrium configura-
tion calculated from a fully nonlinear analysis.

Linear Results

Table 2 presents frequency results based on theories that are lin-
earized aboutthe undeformedstate, thatis, the usuallinearapproach.
The results for the present wing model were obtained using eight
finite elements with all nonlineareffects suppressed. They are com-
pared with the exactfrequenciesof a beam. The frequenciesare very
close except for the third flatwise bending mode. The inaccuracy of
the third flatwise bending mode can be attributed to the coarse finite
elements discretization(eight elements); however, the third flatwise
bendingmode does not significantly influence the aeroelasticresults
for this particular example.

Table 3 presents results from a linear calculation for flutter fre-
quency and speed for the present wing model. The results from the
present analysis are obtained with all nonlinear effects suppressed.

Table 3 Comparison of linear aeroelastic results

Present  Analysis %
Parameter analysis of Ref. 15 Difference
Flutter speed, m/s 32.21 32.51 —-0.9
Flutter frequency, rad/s  22.61 22.37 +1.1
Divergence speed, m/s 37.29 37.15 +0.4
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Fig. 2 Variation of flutter speed with angle of attack.

Eight finite elements are used to model the structure and six inflow
states are used to model the inflow within each of the finite elements.
The results are compared against those obtained using the theory
of Ref. 15, which uses a Rayleigh-Ritz structural analysis with
uncoupled beam mode shapes and Theodorsen’s two-dimensional
thin-airfoil theory for unsteady aerodynamics. The results are prac-
tically identical, indicating that eight finite elements are sufficient
for the purposes of aeroelastic flutter calculations.

Nonlinear Flutter Results

What is meant by nonlinear flutter needs to be clarified. First,
the complete nonlinear model is used to obtain the static equilib-
rium configuration. Then, the equations are dynamically linearized
about the static equilibrium configuration to obtain a set of linear
differential equations in terms of the perturbation variables. Flutter
analysisis then conducted with these linearized equations of motion
to calculate the nonlinear flutter speed.

Results are first presented for just the wing (with a cantilevered
boundary condition). To investigate the effect of flight loads, the
analysis is conducted for various values of angle of attack. The
proper angle of attack in flight will be a function of the flight con-
figuration. Figure 2 presents the nonlinearflutter results for the wing
model including static deformation due to gravity and aerodynamic
forces. The flutter speed and frequency at each value of root angle
of attack is obtained as follows: 1) choose a flight speed, 2) cal-
culate the static equilibrium deformed shape at the flight speed, 3)
dynamically linearize about the deformed shape, 4) calculate the
eigenvaluesof the linearized system, 5) check for stability, if stable,
increase the flight speed and repeat all of the preceding steps until
instability speed is reached.

Figure 2 shows the variation of the nonlinear flutter speed as a
functionof o, the rootangle of attack. The plot showsrapid changes
in the flutter speed at low values of «. Also, the nonlinear flutter
speed and frequency are much lower than those estimated by the
linear model. At low «y, the aerodynamic forces are low and grav-
itational forces lead to downward bending of the wing. As will be
explained in detail in the next section, wing bending leads to struc-
tural nonlinearities,which, in turn, change the aeroelastic character-
istics of the wing. At around 0.61 deg, there is a jump in the flutter
speed and frequency. After the jump there is a smooth decrease in
flutter speed and frequency. At around 4.5 deg, the flutter speed
again jumps, this time off of the scale of the plot. Figure 3 shows
the correspondingtip displacementat the flutter speed. As expected,
the tip displacement is negative for low «. There is a discontinu-
ity in the tip displacement that coincides with the discontinuity in
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Fig. 3 Flutter static tip displacement at various root angles of attack.
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Fig. 4 Variation of structural frequencies with tip displacement.

flutter speed and frequency in Fig. 2. After the discontinuity, the
tip displacement increases monotonically. Note that in actual 1-g
flight, oy will be high enough so that the lift balances the weight of
both the wing and fuselage, and, thus, the deformed wing shape will
always be curved upward. Comparing the two plots, one can infer
that wing bending (or tip displacement) is favorable for flutter and
leads to decrease in the flutter speed.

Flutter Speed and Tip Displacement

It turns out that there is a strong relationshipbetween the wing-tip
displacement and the flutter speed. In the example considered, the
drastic change in aeroelastic characteristicsis due to changes in the
structural characteristics of the wing due to bending (tip displace-
ment). Unfortunately, this effect is easily confused with that due to
additional velocity-tipdisplacementcouplingintroduced by «, that
is, apart from flutter speed being a function of tip displacement (due
to structural nonlinearities), the tip displacementitself is a function
of the speed (due to aerodynamic forces, which are a function of
speed).

The case study presented in this section uses a tip load to deform
the wing. This tip load is not a function of flight speed, and one can
clearly observe the effectof bending on the wing flutter. First, the re-
sults for the variation of structural natural frequencies as a function
of wing-tip displacementare shownin Fig. 4. Structuraldeformation
in wing bending (up and down or flatwise) leads to couplingbetween
the torsion and edgewise bending mode. This coupling can be physi-
cally understoodby observing that an edgewise force on a deformed
wing would lead to twisting. The reader is referred to Ref. 16 for de-
tails. In the present case, one observes a large decrease in the modal
frequency for the torsion mode (which becomes coupled torsion/
edgewise bending mode) as tip displacementis increased. The flat-
wise bending modes are unaffected. Figure 5 shows the correspond-
ing drop in both flutter speed and flutter frequency with increase in
tip displacement. This decrease in the flutter speed (and frequency)
is directly connected to the decrease in the torsional frequency with
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Fig. 5 Variation of flutter speed and frequency with given static tip
displacement.
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deformation. Lower torsional frequency helps in coupling with the
flatwise bending mode, leading to lower flutter speed.!”

To understand the results presented in the previous section, one
needs now to do some cross plotting. Figure 6 demonstrates how
closely the wing-tip displacement correlates with the flutter speed,
and how it could be used to obtain flutter results for various values
of o (as presented in Fig. 2). The thick line plots the flutter speed
as a function of tip displacement (same as Fig. 5). The other curves
plot the tip displacement as a function of speed at various «. For
example, the solid line for oy = 0 deg is just a straight line because
the tip displacement is only due to gravity. For very small o, the
flutter and tip displacement curves intersect at very small speeds,
and one gets very low flutter speeds. For slightly higher ¢, around
0.5 deg, the flutter and tip displacementcurves intersect three times.
Thus, one observes that the wing flutters in a range of speeds, after
which it is again stable for a range of speeds, after which it flutters
again. The range of speeds over which the wing flutters, however,
decreases with increasing «g. At around oy =0.75 deg, the first
two intersection points collapse, the first range of flutter speed dis-
appears, and the flutter speed jumps to the next flutter range. At
this «p, one sees a jump in the flutter speed from approximately
22 m/s up to about 28 m/s, and a corresponding jump in the tip
displacement.

In summary, the nonlineareffectsrelated to flutter (for the present
model) are associated with the shift in natural frequencies caused
by the change in static equilibrium configuration. This explains the
decrease in the flutter speed shown in Fig. 2. Figure 6 gives more
insight into the behavior of the system and provides a complete
picture of the range and strength of instability and the existence of
hump modes (small regions of weak instability).

The jump in flutter speed at oo =4.5 deg (Fig. 2) can also be
explained by similar matching. Figure 7 shows the frequency and
damping plots for larger angles of attack. Again, flutter occurs in
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Fig. 8 Effect of torsion/edgewise bending structural coupling on the
nonlinear flutter results.

a small range above the flutter critical speed. Though the flutter
speed is decreasing with «, the strength and range of flutter is also
decreasing. At around 4.5 deg, the damping does not reach zero
beforereversingits direction and increasing; thus, there is a jump in
flutter speed. Note here that even though there is no instability, the
damping at some flight speeds may be very close to zero, possibly
leading to large vibrations.

Avoiding Deleterious Nonlinear Effects

As discussed in the earlier section, lift-induced curvature of the
beam leads to a significant decreasein the flutter speed. This degra-
dation of the aeroelasticcharacteristicscan be attributed to coupling
between torsion and edgewise bending, induced by that curvature.
Thus, one could possibly increase the flutter speed by applying an
opposite coupling.

Figure 8 shows the effect of structural coupling on the nonlinear
aeroelastic characteristicsof the wing. The parameter ¢ is the cross-
sectional coupling coefficient defined by the ratio of the torsion/
edgewise bending coupling flexibility to the square root of the prod-
uct of the torsional and edgewise bending flexibility. It is assumed
that a maximum coupling of £0.2 can be obtained by structural
tailoring. As seen in Fig. 8, the coupling leads to shift of the flutter
speed. One can thus obtain an approximately 10% increase in the
flutter speed with such induced coupling.

To increase the flutter speed at a specific loading condition, one
could precurve the wing downward so that at the nominal flight
condition the wing is approximately straight. Figure 9 shows the
effect of precurvature on the nonlinear flutter results. Note that one
could tailor the curvature so that at the trim condition, the wing
is almost straight, and, thus, the flutter speed will be increased to
a level close to the undeformed wing flutter speed. Note that the
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Fig. 9 Effect of precurvature on the nonlinear flutter results.
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downward precurvatureis limited by the ground clearance required
of the wings.

Trim Results

This section investigates the static trim results for the airplane.
Figure 10 shows the trim angle of attack ¢ at various flight speeds.
Here, oy is obtained by calculating the angle of attack that gives the
required vertical force. Contrary to expectations based only on lin-
ear static aeroelasticity,the value of «p required from a flexible wing
is more than that from a rigid one. This is because the aerodynamic
lift is directed at an angle perpendicular to the flow and the wing
reference line, which, in the present case of large flatwise bend-
ing, implies that the lift does not act in the vertical direction. The
displacement along the wing is certainly outside the region of ap-
plicability of linear theory, as indicatedin Fig. 11, which shows the
displacementshape of the wing at a 25 m/s forward speed trim con-
dition. This large deformation and associated loss of aerodynamic
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Table4 Comparison of rigid aircraft flight dynamics

Present  Analysis %
Parameter analysis  of ref. 18  Difference
Phugoid frequency w, , 0.320 0.319 +0.3
Phugoid damping ¢p 0.0702 0.0709 -1.0
Short period frequency wgp 5.47 5.67 -3.5
Short period damping Zsp 0.910 0.905 +0.6
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Fig. 12 Total lift to rigid lift ratio at oy =5 deg.

force in the vertical direction leads to the requirement of a higher
value of ay.

Figure 12 plots the ratio of total lift (force in vertical direction
perpendicularto the flight velocity and span) torigidliftas a function
of speed. The drasticloss of effective verticalliftis clearly observed
in the nonlinear model as compared to the linear one. The main
significance of this result lies in that, if the stall angle is around
10deg, thentherigid-winganalysis givesthe stallspeed to be 22 m/s,
whereasthe actual flexibleaircraftwould stall at a higher flightspeed
of around 25 m/s (see Fig. 10). The use of linear theory to predict
aircraft performance would, thus, lead to incorrectestimation of the
flight envelope.

Rigid Aircraft Flight Dynamics

Table 4 shows the phugoid and short-period mode results for the
example aircraft flying at 25 m/s. The results are obtained given
a rigid wing and are compared against the frequencies obtained
by a simple rigid aircraft analysis given by Roskam.'® One sees
that results from the present analysis are essentially identical to the
previously published results.

Stability of Complete Aircraft

When flexibility effects are taken into accountin a flight dynamic
analysis, the behavioris distinctly different from that of a rigid air-
craft. Figure 13 compares the flight dynamicsroots (frequencies and
dampings) obtained with and without wing flexibility. The phugoid
as well as the short-period mode are affected by wing flexibility.
To see the transition of the root locus plot from rigid aircraft to
flexible aircraft, a stiffened aircraft root locus plot is also provided.
The stiffened aircraft wing stiffnessesare five times the actual wing
stiffnesses. With the help of this additional case, the drastic differ-
ence in the flight dynamic modes due to wing flexibility can be seen
as a smooth transition rather than a jump.

On the other hand, the rigid-body modes usually associated with
the flight dynamic roots also affect the aeroelastic behavior of the
wing. Figure 14 comparesthe rootlocus plot for the complete aircraft
(including nonlinear aeroelastic analysis and rigid-body modes)
with those obtained by using linear wing aeroelastic analysis and
nonlinear wing aeroelasticanalysis. The nonlinear wing aeroelastic
analysisuses the known flight trim angle of attack as the equilibrium
condition, and the eigenvalue analysis is conducted at that steady
state. A magnified plot is inserted that shows the qualitative dif-
ferences in more detail. Clearly, the low-frequency modes that in-
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Fig. 13 Rootlocus plot showing the flight dynamics roots, with a mag-
nified section showing the roots nearest the origin.
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Fig. 14 Expanded root locus plot with magnified section inserted that
depicts roots in vicinity of the unstable root.

volve wing flexibility are completely coupled to the flight dynamic
modes, changing their behavior completely. On the other hand, the
high-frequency wing aeroelastic modes do not strongly couple with
the flight dynamic modes. However, the effect of the trim condition
is very important because the trim condition defines the nonlin-
ear equilibrium about which the aeroelastic model is dynamically
linearized. Thus, the flutter modes are not predicted accurately by
the linear theory, but the nonlinear wing theory does a good job
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because the flutter modes are primarily affected by the wing struc-
tural nonlinearity. Thus, if the static trim solution is properly taken
into account, one can expect a simplified nonlinear analysis, for ex-
ample, one that includes only the cantilevered wing, to give a good
estimate of the complete aircraft aeroelastic stability.

Conclusions

A nonlinear aeroelastic study has been conducted on a complete
aircraft model geometrically similar to current HALE aircraft. Be-
cause of the large aspect ratio of the wing, the corresponding large
deflections under aerodynamic loads, and the changes in the aero-
dynamic loads due to the large deflections, there can be significant
changes in the aeroelastic behavior of the wing. In particular, sig-
nificant changes can occur in the natural frequencies of the wing as
a function of its tip displacement that very closely track the changes
in the flutter speed. This behavior can be accounted for only by
using a rigorous nonlinear aeroelastic analysis. The reduction in
flutter speed due to the nonlinear coupling among edgewise wing
bending and torsion (arising from the flatwise bending deforma-
tion) can be decreased by the introduction of opposite structural
coupling between torsion and edgewise bending, for example, by
the use of composite tailoring, or it could be effectively eliminated
by precurving the wing.

The overall flight dynamic characteristics of the aircraft also
change due to wing flexibility. In particular, the trim solutionas well
as the short-periodand phugoid modes are affected by wing flexibil-
ity. Should one neglect the nonlinear trim solution and the flight dy-
namic frequencies, one may find the predicted aeroelastic behavior
of the complete aircraft to be very different from its actual behavior.
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